Sequential Event Detection Using Multimodal Data in Nonstationary Environments
نویسندگان
چکیده
The problem of sequential detection of anomalies in multimodal data is considered. The objective is to observe physical sensor data from CCTV cameras, and social media data from Twitter and Instagram to detect anomalous behaviors or events. Data from each modality is transformed to discrete time count data by using an artificial neural network to obtain counts of objects in CCTV images and by counting the number of tweets or Instagram posts in a geographical area. The anomaly detection problem is then formulated as a problem of quickest detection of changes in count statistics. The quickest detection problem is then solved using the framework of partially observable Markov decision processes (POMDP), and structural results on the optimal policy are obtained. The resulting optimal policy is then applied to real multimodal data collected from New York City around a 5K race to detect the race. The count data both before and after the change is found to be nonstationary in nature. The proposed mathematical approach to this problem provides a framework for event detection in such nonstationary environments and across multiple data modalities.
منابع مشابه
A fast one-pass-training feature selection technique for GMM-based acoustic event detection with audio-visual data
Acoustic event detection becomes a difficult task, even for a small number of events, in scenarios where events are produced rather spontaneously and often overlap in time. In this work, we aim to improve the detection rate by means of feature selection. Using a one-against-all detection approach, a new fast one-pass-training algorithm, and an associated highly-precise metric are developed. Cho...
متن کاملNon - Speech Acoustic Event Detection Using
Non-speech acoustic event detection (AED) aims to recognize events that are relevant to human activities associated with audio information. Much previous research has been focused on restricted highlight events, and highly relied on ad-hoc detectors for these events. This thesis focuses on using multimodal data in order to make non-speech acoustic event detection and classification tasks more r...
متن کاملSemantic Concept Mining Based on Hierarchical Event Detection for Soccer Video Indexing
In this paper, we present a novel automated indexing and semantic labeling for broadcast soccer video sequences. The proposed method automatically extracts silent events from the video and classifies each event sequence into a concept by sequential association mining. The paper makes three new contributions in multimodal sports video indexing and summarization. First, we propose a novel hierarc...
متن کاملMulti-View Face Detection in Open Environments using Gabor Features and Neural Networks
Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...
متن کاملAn Event-Condition-Action Approach for Contextual Interaction in Virtual Environments
In order to support context-dependency in model-based development, three components need to be realised: Context Detection, Context Switching and Context Handling. Context detection is the process for detecting changes in context, while context switching brings the system in the new state that needs to be supported. Finally, context handling adapts the interaction possibilities to the current c...
متن کامل